Hepatic cholesterol homeostasis: is the low-density lipoprotein pathway a regulatory or a shunt pathway?
نویسندگان
چکیده
OBJECTIVE The hypothesis that cholesterol that enters the cell within low-density lipoprotein (LDL) particles rapidly equilibrates with the regulatory pool of intracellular cholesterol and maintains cholesterol homeostasis by reducing cholesterol and LDL receptor synthesis was validated in the fibroblast but not in the hepatocyte. Accordingly, the present studies were designed to compare the effects of cholesterol that enters the hepatocyte within an LDL particle with those of cholesterol that enters via other lipoprotein particles. APPROACH AND RESULTS We measured cholesterol synthesis and esterification in hamster hepatocytes treated with LDL and other lipoprotein particles, including chylomicron remnants and VLDL. Endogenous cholesterol synthesis was not significantly reduced by uptake of LDL, but cholesterol esterification (280%) and acyl CoA:cholesterol acyltransferase 2 expression (870%) were increased. In contrast, cholesterol synthesis was significantly reduced (70% decrease) with other lipoprotein particles. Furthermore, more cholesterol that entered the hepatocyte within LDL particles was secreted within VLDL particles (480%) compared with cholesterol from other sources. CONCLUSIONS Much of the cholesterol that enters the hepatocyte within LDL particles is shunted through the cell and resecreted within VLDL particles without reaching equilibrium with the regulatory pool.
منابع مشابه
The effect of portacaval shunt on hepatic lipoprotein metabolism in familial hypercholesterolemia.
The hyperlipidemia observed in familial hypercholesterolemia can be reduced by portacaval anastomosis. We report the effects of a portacaval shunt on hepatic morphology and biosynthetic pathways crucial to hepatic cholesterol homeostasis in homozygous receptor-negative familial hypercholesterolemia. Portacaval anastomosis was associated with a dramatic change in hepatocyte morphology, 28% reduc...
متن کاملDysregulation of the Low-Density Lipoprotein Receptor Pathway Is Involved in Lipid Disorder-Mediated Organ Injury
The low-density lipoprotein receptor (LDLR) pathway is a negative feedback system that plays important roles in the regulation of plasma and intracellular cholesterol homeostasis. To maintain a cholesterol homeostasis, LDLR expression is tightly regulated by sterol regulatory element-binding protein-2 (SREBP-2) and SREBP cleavage-activating protein (SCAP) in transcriptional level and by proprot...
متن کاملنقش ژن SHIP2 در لیپوژنز القایی توسط اولئات
Introduction: Dyslipidemia is one of the key risk factors for cardiovascular disease in type 2 diabetes (T2D). The dyslipidemia is characterized by increased plasma concentration of triglycerides (TG), reduced concentration of high density lipoprotein cholesterol (HDL-C) and an increased concentration of small dense low density lipoprotein (LDL) cholesterol. Evidence from bo...
متن کاملCholesterol-Dependent Anaplasma phagocytophilum Exploits the Low-Density Lipoprotein Uptake Pathway
In eukaryotes, intracellular cholesterol homeostasis and trafficking are tightly regulated. Certain bacteria, such as Anaplasma phagocytophilum, also require cholesterol; it is unknown, however, how this cholesterol-dependent obligatory intracellular bacterium of granulocytes interacts with the host cell cholesterol regulatory pathway to acquire cholesterol. Here, we report that total host cell...
متن کاملProtosappanin A protects against atherosclerosis via anti- hyperlipidemia, anti-inflammation and NF-κB signaling pathway in hyperlipidemic rabbits
Objective(s): Protosappanin A (PrA) is an effective and major ingredient of Caesalpinia sappan L. The current study was aimed to explore the effect of PrA on atherosclerosis (AS). Materials and Methods: Firstly, the experimental model of AS was established in rabbits by two-month feeding of high fat diet. Then, the rabbits were randomly divided into five groups and treated with continuous high ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 33 11 شماره
صفحات -
تاریخ انتشار 2013